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Abstract
The segmentation of visible electromagnetic radiation into chromatic categories by the

human visual system has been extensively studied from a perceptual point of view, resulting

in several colour appearance models. However, there is currently a void when it comes to

relate these results to the physiological mechanisms that are known to shape the pre-corti-

cal and cortical visual pathway. This work intends to begin to fill this void by proposing a

new physiologically plausible model of colour categorization based on Neural Isoresponsive

Colour Ellipsoids (NICE) in the cone-contrast space defined by the main directions of the

visual signals entering the visual cortex. The model was adjusted to fit psychophysical mea-

sures that concentrate on the categorical boundaries and are consistent with the ellipsoidal

isoresponse surfaces of visual cortical neurons. By revealing the shape of such categorical

colour regions, our measures allow for a more precise and parsimonious description, con-

necting well-known early visual processing mechanisms to the less understood phenome-

non of colour categorization. To test the feasibility of our method we applied it to exemplary

images and a popular ground-truth chart obtaining labelling results that are better than

those of current state-of-the-art algorithms.

Introduction
This study aims at closing the explanatory gap between colour perception and colour categori-
zation by providing a plausible explanation supported by a low-level model (termed Neural
Isoresponse Colour Ellipsoids or NICE) that was adjusted to psychophysical results and can be
parsimoniously implemented by cortical neurons.

The richly-coloured appearance of the world is in great measure, a creation of our brains.
For example, there are no discontinuities in the electromagnetic spectrum of the light reaching
us from a rainbow and yet we see hues clearly separated by colour categories. Although the
whole process is highly non-linear in nature, the first stages corresponding to low-level colour
vision mechanisms are usually represented in a conveniently linear colour space. After the
stimulation of the three cone photoreceptors (L, M and S for Long-, Medium- and Short-
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wavelength sensitive) there is a second stage, partially composed by chromatically opponent
combinations of these neural signals at the retinal level. LMS-stimulations are the basis for
cone excitation spaces and the responses of opponent and non-opponent cells at the level of
the Lateral Geniculate Nucleous (LGN) give birth to various achromatic-tritanopic-deuteran-
opic spaces or ATD-spaces for short [1–3]. The perceptual metric of these spaces is clearly
non-Euclidean, as demonstrated by the shape of discrimination threshold data when plotted in
a tristimulus space [4]. Because of these non-linearities, it is not possible to obtain perceptually
uniform representations by just applying linear transformations to the photoreceptors’ signals
[5] and this is the reason why all perceptually uniform spaces recommended by the regulatory
Commission Internationale de l'Eclairage (CIE) such as L�u�v�, L�a�b�, RLab, Llab, etc. involve
non-linear transformations. There are also differences between the perceptually-measured car-
dinal directions (traditionally called “unique hues”) and those predicted by LGN-based models
(and measured in cortical neurons) [6–9]. The existence of these alternative cardinal directions
suggests that ATD-spaces might have little significance beyond defining an adaptable synapse
for the signal entering the visual cortex. To account for these variations, a number of non-lin-
ear cortical representations have been proposed which incorporate adaptive processes and
other “perceptual” non-linearities that cannot be envisaged as simple basis transformations of
the previous stages [10, 11]. Although they give a precise numerical characterization of colours
viewed in isolation, none of the physiological models above fully quantify the influence of the
illuminant, complex surrounds and complex background on our perception of lightness,
brightness, saturation, hue and chroma. These interactions are best quantified by colour
appearance models [12], which do not make strong claims about following the different physi-
ological stages found in the human visual system.

As more of the physiology of the primate visual system and in particular the visual cortex
becomes understood, the mechanisms that transform cone excitation signals into sensation
(colour appearance) are slowly revealed. For example, while LGN cells are hardly susceptible to
habituation (i.e. they do not show strong colour appearance aftereffects as a result of prolonged
exposure to chromatically modulating stimuli) [13], many neurons in area V1 (the primary
visual cortex) are [7]. This and the broadly distributed chromatic preferences of V1 neurons [7,
8, 14–16] suggest that the basis for some psychophysically measured, fundamental chromatic
mechanisms may be well established as early as the striate cortex. Indeed, many researchers
have looked for a smaller, “specialized” population of neurons likely to be responsible for col-
our vision in V1. These colour-cells (usually termed “double-opponent”) which respond best
to opponent signals from spatially adjacent cones in the retina, have been found to cluster
together in “blobs” within V1 [17, 18]. Information from the V1 blobs is then sent to a later
visual area called V2, which also contains cells tuned for colour and arranged in “thin stripes”,
alternating with cells concerned with other visual attributes such as motion. From there, colour
information continues towards other areas in the cortex like V4 and V3, both of them con-
cerned with colour and form. V4 and associated areas contain millimetre-sized clusters called
“globs” constituting the first colour processing area to be sensitive to the full range of the col-
ours found in the visible part of the electromagnetic spectrum [19, 20]. There is also growing
evidence that the physical location of many neurons in the cortex is also determined by their
peak hue sensitivity, with units arranged in partially-overlapping “clusters” [20–22] that
respond more to perceptually defined hues than to cone-opponent cardinal directions [23].
More recently, V1 non-linearities have been shown to be partially determined by neurons
responding to all colour directions, whose isoresponse surfaces were modelled as ellipsoids in
ATD-space with major and minor axes aligned to perceptual cardinal directions [8]. In this
context, colour may be represented not by a single brain area, but by spatially distributed
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activity patterns in the visual cortex clustered according to the colour selectivity of cortical neu-
rons [24].

The gap between our understanding of the neurophysiological machinery of the visual path-
way and the actual appearance of colours becomes wider when it comes to categorization, a
process by which elements forming a scene are differentiated and grouped, reducing an
extremely complex world to cognitively tractable proportions. In the colour domain this reduc-
tion is large indeed: from the nearly 2 million colours that can be distinguished perceptually
[25] to the nearly 30 categories that can be recalled by a normal subject [26]. Of these, and even
smaller subset of 11 categories has been suggested by Berlin and Kay to be common to all cul-
tures and languages with data showing remarkable consistence across culturally diverse popu-
lations in the naming of these colour categories [27, 28]. The later results ignited a strong
debate in cognitive science about the role of language in perception: one side (the “relativists”,
associated to Benjamin Lee Whorf) holding that perception is shaped by the semantic catego-
ries of one’s native language, and the other side (the “universalists”) arguing on behalf of a uni-
versal underlying beneath thought and perception, which shapes language instead. Scientific
consensus has swung between these two sides for a number of years, eventually reaching a
compromise position of moderate universality (see review by Kay and Regier [29]) based on
evidence which seems to partially support both views: colour terms do affect colour perception
while there is indeed a universal background to colour naming. More recent results suggest
that language might shape perception primarily in the right visual field which is connected to
the brain’s left hemisphere (dominant for language), acting as a sort of partial “linguistic filter”
[30–33]. This top-down influence of language is evident in a phenomenon called categorical
perception (i.e. stimuli located near the categorical boundary are discriminated faster or more
accurately than stimuli well within the category) and its effects are likely to disappear when
subjects perform a verbally concurrent task [30]. Categorical perception prior to language
acquisition is still far from understood, since infants show clear categorical perception effects
in their left visual field and none in their right one, suggesting a reversal of hemisphere roles as
language is acquired [34]. At the same time, there is growing evidence both from event-related
potential (ERP) and functional magnetic resonance imaging (fMRI) studies, that early (low-
level) mechanisms also play a large role in the categorical perception of colour. For example,
fMRI studies have shown lateralized activation of the language and visual areas when subjects
were asked to discriminate colours of different lexical categories, suggesting that the language
area might act as a top-down modulator of the visual cortex [35]. Regardless of this intimate
relationship between colour categorization and language, studies of non-verbal categorization
using colour-sorting tasks [36, 37], free categorization tasks [38], visual search [39] and infant’s
eye movements [40] have shown that there must be some kind of intermediate, free-from-lan-
guage colour categorization stage. In particular, psychophysical experiments [38] revealed that
subjects can perform categorization tasks without colour terms (i.e. on the same stimulus used
for low-level colour perception tasks) and moreover, they can perform discrimination tasks
without any evidence of categorical boundary effects. The exact site of this intermediate stage
of colour sensation prior to learned colour-naming is unknown, although there is growing
physiological and neuroimaging evidence (from chromatic selectivity studies [41], effects of
luminance contrast [42], universal colour naming constraints [43], hue maps [21], chromatic
motion discrimination [44], and the effects of V2 lesions [45]) pointing out to V1. However,
the precise neural mechanisms behind this complex partitioning of chromatic space are still
largely unknown. This work aims at closing the gap between what is known about the physiol-
ogy of the visual system and current pragmatic solutions to the colour categorization problem.
To do this we performed a psychophysical experiment to specifically measure the boundaries
of colour categorical perception in the colour space likely to represent the signals entering the
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visual cortex. From these measures we estimated the kinds of mathematical operations neces-
sary to define those categorical regions, which may result from the overall effect of weighted
excitatory and inhibitory responses over a net of synaptic connections in the brain. If these
operations are implemented in V1, the most likely candidates to perform such low-level seg-
mentation of chromatic space are neurons similar to neuron type 3 described by Horwitz and
Hass [8].

Observer variability in colour naming
Precisely measuring the boundaries of chromatic categorization is a difficult problem, usually
substituted by the simpler problem of determining chromatic regions whose names observers
agree upon. However, this is still a complex task, made difficult by the large individual differ-
ences (even among speakers of the same language) in selecting the best examples of each colour
also called “focal colours”. Indeed, focal colours selected by speakers of different languages are
sometimes more similar than those selected by speakers of the same language. Although this
phenomenon has been extensively studied in the context of colour appearance and unique
hues [46–49], the precise source of these individual differences remains unknown [50]. The
most obvious explanation is perhaps differences in the physiology, e.g. large differences in mac-
ular and lens densities across individuals [50–52], resulting in a variable shift away from
shorter wavelengths, which are absorbed by the ocular media. Pigmentation density also
increases with age, although no significant difference in colour judgements with age has been
found [53, 54]. Cone photopigments are also subject to considerable variations both in the
peak wavelength and bandwidth of their spectral sensitivity because of polymorphisms in the
encoding genes [55] and variations in pigment density [56]. Variations in the ratio of L:M
cones are also large for individual subjects (from less than 1 up to one order of magnitude in
some cases) [57], in fact they are far too large to account for individual differences in unique
hues [58, 59]. Pronounced spectral sensitivity differences do indeed play a role in the placement
of unique hues: red-green anomalous trichromats for example, place unique yellow at signifi-
cantly different wavelengths than normals, exposing the limits to whatever compensatory neu-
ral mechanism the visual system may have to balance physiological variations [60]. Some
authors [61–64] have argued that environmental factors may account for the mismatch
between the appearance of colours and observers’ chromatic sensitivity [59]. For example, a
neural adjustment based on the average illuminant of the environment may account for the
independence of unique yellow (the point where the output of the red-green opponent system
is minimal) from different cone ratios, small L and M sensitivity differences or the effects of
aging. If this was true, then different natural environments (i.e. different natural statistics) with
either geographical or seasonal variations would influence colour appearance and naming mea-
sures [65]. This hypothesis is complementary to related arguments pointing out the impor-
tance of ripening fruits and foliage in shaping the characteristics of primate trichromatic
colour vision [66–68], thus the special salience of red in human languages [27]. In a more
recent study, Witzel and Gegenfurtner [69] measured both sensitivity to colour differences and
categorical boundaries, concluding that although there is a link between them, sensitivity to
colour is not inherently determined by categorization abilities. There is also an argument to be
made about the contribution of linguistic/cultural contexts to subjective colour judgements
[70, 71]. Webster et al [72] tested colour name variations in two distinct groups (US and Indian
observers) and concluded that basic colour terms were similar, with modest variations in their
loci across different populations. Further studies based on the World Color Survey database
[50, 73] concluded that despite individual differences in focal colours, there were strong univer-
sal tendencies, giving support to the original Berlin and Kay hypothesis [27].
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Measuring categorical boundaries in colour space
Given these difficulties, it is not surprising that much of the effort to study chromatic categori-
zation focuses in its regularities. Psychophysical studies have proposed the existence of “colour
consensus areas” [74, 75] emphasizing the regularities of colour naming space [76] through
paradigms where subjects had to name coloured chips or cards whose colour was generally
sampled around regions of suspected consensus [74]. These psychophysical results form the
basis of computational colour-category models such as that of Benavente et al [77] which
assumes that the boundaries are somehow equidistant from the focal colours and their proper-
ties (position, slope, etc.) are arbitrarily imposed or interpolated. The same applies to the tran-
sition that occurs when a colour loses its saturation, becoming “grey” (e.g. the centre of most
colour spaces). Although less common, measures of the boundary regions have been included
in some categorical modelling work [78] and in work exploring the relationship between colour
categories and colour constancy [79, 80]. In the last example, measurements were part of an
evenly-spaced sampling of the colour space without particular attention on the actual borders.
It is remarkable that although categorical boundaries are the most crucial part of any colour-
category model (this is where the uncertainty is bigger and thus data collection is most critical),
almost all modelling is arguably based on the precise colours considered by speakers of many
languages as “focal” and their variations [64, 78, 81–87].

In this work we performed a psychophysical experiment to measure the boundaries of nine
universal chromatic categories (form the eleven originally proposed by Berlin and Kay) in
3-dimensional (3D) colour space. These boundaries clearly define the shapes of nine 3D ellip-
soids when plotted in the ATD-type colour space determined by the colour opponent signals
that arrive at the visual cortex from the LGN. Following this initial discovery, we present a
model for decoding ATD-type colour opponent signals and constructing a set of universal
chromatic categories that attempts to relate its internal mechanics to what it is known about
the underlying human physiology, in particular the operation of V1 neurons in the striate cor-
tex [8]. Our psychophysical experiment is particularly relevant since (a) by collecting more
data points in the categorical boundaries, it provides a more veridical picture of within-
observer variability, which in our case happened to be larger than the variability across observ-
ers; (b) it takes into account the effects of local contrast such as the influence of coloured back-
grounds in perceived saturation; (c) it accounts for the role of lightness, thus adding the third
dimension to colour categorisation; (d) it allows to link a seemingly wide range of colour pro-
cessing phenomena to colour naming; and (e) it shows the analogy between our ellipsoid
model and the responsiveness of cells in V1. By proposing a low-level model of chromatic cate-
gorization which is based on psychophysical data, and whose algorithm can be plausibly imple-
mented by cortical neurons we expect to provide a link between cortical physiology and
current pragmatic solutions to the colour categorization problem.

The overall organization of this paper is as follows: in the next section (Methods) we
describe our psychophysical experiment. In the Results section we reveal the intrinsic 3D-shape
of these regions when plotted in the chromatically-opponent LGN-based space, propose a
mathematical model and test it against ground-truth images. In the Discussion section we ana-
lyse how our model relates to previous models in the literature and whether these 3D regions
could be parsimoniously generated by aggregating the output of V1 neurons.

Materials and Methods
In this section we describe the psychophysical method used for measuring the boundary
regions between pairs of colour categories, which is designed to collect most data points where
they are most needed, thus countering any informational unbalance.
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A psychophysical experiment designed to measure colour boundary
regions
Because of the large intra-and inter-subject variability of chromatic categorization, we decided
to measure chromatic boundaries by means of themethod of adjustments [88] which has been
used before in the literature [89]. This method maximises the number of data points and the
speed of data collection, reducing tediousness by allowing observers to keep control over the
stimulus therefore improving overall subject performance. In a typical experiment, subjects sit
inside a dark room in front of a monitor and are presented with two colour name words written
in English at the bottom of the screen and a coloured square (test patch) outlined by thick
black lines at the centre (see left panel in Fig 1). They are asked to manipulate the chromaticity
of the central test patch using a gamepad until they find a colour that is “midway between the
colours written at the bottom”. The colour names written below were always pairs of neigh-
bouring colour categories in CIE L�a�b� space (see right panel in Fig 1), selected from the set of
11 basic colour terms originally proposed by Berlin and Kay [27]. We chose to operate in CIE
L�a�b� colour space because it provides a good approximation to perceptually uniform move-
ment steps (for a review on the advantages and disadvantages of CIE L�a�b� see [90]).

The experimental design allowed subjects to alter the chromaticity of the test patch along
fixed pathways belonging to six constant lightness planes in CIE L�a�b� space. Two types of

Fig 1. Schematics of the experiment. Subjects manipulated the hue of a central test patch using a gamepad (left). The test patch was embedded inside a
coloured Mondrian (Condition 1) or a mid-lightness grey background (Condition 2). Two colour names were presented at the bottom of the screen and
subjects had to produce colours equally distant from those represented by the names. They were only allowed to modify the colour along predetermined
paths (e.g. lines or concentric arches of randomised radius in CIE L*a*b* space), which started and ended well inside the consensus colour-name regions
corresponding to the colour names on the screen. There were no time or head movement constraints.

doi:10.1371/journal.pone.0149538.g001
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pathways were used: constant-saturation arch pathways (see Fig 1) and linear pathways where
both hue and saturation were simultaneously modified. Linear pathways were used when it was
not possible to connect two well defined chromatic regions using arch pathways. Each pathway
was always contained within one of six different constant-lightness planes. In the case of arch
pathways, the distance from any given arch to the centre of CIE L�a�b� space (the radius) was a
random number larger than 10 CIE L�a�b� units, and both extremes of the arch were set on
unambiguous focal colour regions, obtained from the model of Benavente et al [81]. The actual
maximum value of the radius depended on the monitor’s colour gamut, and was different for
the lightness levels considered. Line pathways were simply random lines connecting unambig-
uous focal colour regions.

To measure the boundaries of Grey with all other colours, subjects were allowed to alter
only the saturation of the test patch along radial pathways of constant-hue, stemming out from
the centre of CIE L�a�b� space. The angular values (hues) of these pathways were randomised.
The experiment was conducted in six lightness planes with L = [36, 47, 58, 76, 81, 86] lightness
units, three of them (36, 58 and 81) chosen to be the same as in our previous experiments [78].
The other lightness levels (47, 76, 86) were chosen out of convenience to target specific
boundaries.

To avoid errors of expectation and habituation the starting points of all runs were rando-
mised along a given pathway. To make it impossible for subjects to simply “count button
clicks”, we reversed the direction of movement once the observer reached the end of a pathway.
For example, in the experiment shown in Fig 1 our subject would press left/right buttons to
turn the test patch greener or bluer and upon reaching the end of the arch pathway, the patch
would reverse its colour turning towards the opposite category, making it difficult to find the
precise “ends” of the pathways. Button presses were set to produce steps of one CIE L�a�b� unit
(ΔE�).

To provide a common reference for lightness, a 23 mm wide white frame (D65, 124 cd/m2)
outlined the border of the screen and a 10 mm black frame outlined the border of the test patch
in all cases. Both experiments were run under two conditions, Condition 1 and Condition 2.

In Condition 1, the test patch was overlaid on top of a coloured Mondrian. This Mondrian
was dynamically created for each run by selecting a random sample of 200 colours from within
the CIE L�a�b� range of L[0, 100] a[-60, 60] and b[-60, 60]. They were chosen so that their
mean chromaticity was mid-luminance grey (Lab = [50, 0, 0]). Each Mondrian was unique. In
Condition 2, the test patch was presented on top of a mid-grey (D65, 62 cd/m2) background.

The experiment was run on a calibrated cathode ray tube (CRT) monitor (Viewsonic
pf227f) controlled by a Cambridge Research Systems (CRS Ltd) ViSaGe Visual Stimulus Gen-
erator capable of providing 14-bit colour per channel. The calibration was made using custom-
ary CRS Ltd software and a ColorCal (Minolta) colorimeter. Subjects selected colours by
pressing buttons on a Logitech gamepad. Central test patches (squares) subtended 5.2 deg to
the observers at a viewing distance of 156 cm and the presentation time was unlimited,
although subjects were encouraged to spend no more than 30 seconds per trial. Trials were pre-
sented at 5 second intervals. Viewing was binocular and unconstrained. The room was
completely dark (the walls were lined in black and the monitor was the only light source). An
experimental session consisted of a random selection of the 51 chromatic boundaries shown in
of Table 1 (10 trials for each boundary).

We recruited 17 paid subjects (11 females and 6 males between 18 and 30 years old) among
the exchange student and the local resident population. They were all native English speakers,
had normal or corrected-to-normal visual acuity and their colour vision was tested using the
Ishihara and the Farnsworth D-15 colour tests. Subjects were encouraged to take long breaks
between experimental sessions. Experimental sessions lasted between 40 and 60 minutes
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depending on individual observers. Oral consent was obtained from the participants. No writ-
ten consent was necessary since the data were analysed anonymously.

Boundaries were measured on constant-lightness planes (no measurements were made
using lightness-only, vertical pathways). We also analysed whether these boundaries are differ-
ent for chromatic and achromatic background (Conditions 1 and 2). The current paradigm
was decided after discarding our previous yes/no staircase paradigm [91] which proved to be
too precise (apart from slow and tedious) for the task proposed here. By using this particular
paradigm we sacrificed experimental precision in favour of much larger amounts of data, in a
procedure that is more consistent with the large variability of the subject’s responses obtained
here (see below).

In summary, our paradigm targeted the boundaries of the focal colour regions proposed by
Berlin and Kay including achromatic/chromatic boundaries (Grey versus all other colours).
The selection of pathways and boundaries was made considering the minimum amount of
points to define a curve in a plane and the 3-dimensional shape and position of categorical

Table 1. Summary of the chromatic boundaries explored in both experiments. Column “L” indicates the lightness value of each given CIE L*a*b*
plane considered, column “Boundaries” indicates the chromatic boundary considered and column “Path” indicates the type of path followed by the experimen-
tal algorithm. “A” represents an “arch” of equal saturation and “L” represents an arbitrarily defined “line”.

A–Chromatic Boundaries B–Achromatic Boundaries

L Boundary Path L Boundary Path

36 Red-Brown (R-Br) L 36 Grey-Green (Gr-G) L

36 Brown-Green (Br-G) A 36 Grey-Blue (Gr-B) L

36 Green-Blue (G-B) A 36 Grey-Purple (Gr-Pu) L

36 Blue-Purple (B-Pp) A 36 Grey-Red (Gr-R) L

36 Purple-Red (Pp-R) A 36 Grey-Brown (Gr-Br) L

47 Red-Brown (R-Br) L 47 Grey-Red (G-R) L

47 Brown-Green (Br-G) A 47 Grey-Brown (G-Br) L

47 Purple-Red (Gr-B) A

58 Pink-Red (Pk-R) A 58 Grey-Green (Gr-G) L

58 Red-Orange (R-O) L 58 Grey-Blue (Gr-B) L

58 Orange-Brown (O-Br) L 58 Grey-Purple (Gr-Pu) L

58 Brown-Green (Br-G) A 58 Grey-Pink (Gr-Pk) L

58 Green-Blue (G-B) A 58 Grey-Red (Gr-R) L

58 Blue-Purple (B-Pp) A 58 Grey-Orange (Gr-O) L

58 Purple-Pink (Pu-Pk) A 58 Grey-Yellow (Gr-Y) L

58 Grey-Brown (Gr-Br) L

76 Pink-Orange (Pk-O) A 76 Grey-Pink (G-Pk) L

76 Orange-Yellow (O-Y) L 76 Grey-Orange (G-O) L

76 Yellow-Green (Y-G) L

76 Purple-Pink (Pp-Pk) A

81 Pink-Orange (Pk-O) A 81 Grey-Green (Gr-G) L

81 Orange-Yellow (O-Y) L 81 Grey-Blue (Gr-B) L

81 Yellow-Green (Y-G) L 81 Grey-Purple (Gr-Pu) L

81 Green-Blue (G-B) A 81 Grey-Pink (Gr-Pk) L

81 Blue-Purple (B-Pp) A 81 Grey-Orange (Gr-O) L

81 Purple-Pink (Pu-Pk) A 81 Grey-Yellow (Gr-Y) L

86 Orange-Yellow (O-Y) L 86 Grey-Orange (G-O) L

86 Yellow-Green (Y-G) L 86 Grey-Yellow (G-Y) L

doi:10.1371/journal.pone.0149538.t001
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regions estimated by other authors [78, 79, 81]. Not all subjects participated in all pathways
measurements.

Results
In this section we present our psychophysical results and fit them with a parametric model
based on the ellipsoidal isoresponse surfaces of visual cortical neurons. To test the feasibility of
our method we applied it to exemplary images and a popular ground-truth chart.

Psychophysical results
Fig 2 shows our results in CIE L�a�b� space, plotted of all six L-levels considered. Coloured
dots represent the boundary locations selected by subjects in individual trials in both

Fig 2. Results plotted in CIE L*a*b*. Coloured points represent individual trials for 17 participants (all native English speakers). Each colour corresponds
to a hue-dependent boundary. For clarity, all colours in the plot were calculated as the average of the two focals that determine the boundary. For example,
points that correspond to the boundary between Green and Blue (G-B) are coloured turquoise, which is the mathematical average resulting from the
combination of these colours. The reference white was that of the frame described in the methods section.

doi:10.1371/journal.pone.0149538.g002
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conditions. For representational purposes, pixel colours in the plot were obtained by averaging
the two focal colours involved in each boundary experiment. The “white” locus in all plots
(L = 100, a = 0, b = 0) corresponds to the white frame (D65, 124 cd/m2) present in all experi-
ments as described above.

Most of the measurements in Fig 2 were made at three lightness levels (L = [36, 58, 81]) and
concentrated on boundaries of relatively low saturation (near the achromatic locus). They were
made either following constant lightness and saturation (arch) pathways or constant lightness
and hue (radial) pathways in the case of Grey versus all other colours. Here subjects manipu-
lated the central stimulus patch in the saturation dimension of CIE L�a�b� only. The rest of the
measures were obtained by following arbitrary paths designed to complement the radial and
arch pathways. The main reason for this was the asymmetric nature of the monitor gamut in
CIEL�a�b� space which limited in practice the number of options available for constant-satura-
tion pathways between pairs of highly saturated colours. Arbitrary pathways measures were
located in regions of high saturation (near the edges of the monitor’s gamut), were not
restricted by saturation or hue and followed straight lines of constant lightness. Columns
“path” in Table 1 indicate the type of pathway used in each case. The choice of lightness levels
was determined by the need to fit the curvature of our categorical model along the lightness
dimension, considering that to fit any conic section curve in two dimensions once the centre is
determined, a minimum of 3 non-collinear points is necessary [92]. This is the reason why
boundaries were measured along three extra lightness planes (L = [47, 76, 86]) allowing us to
fit curved 3D surfaces to all of the 9 categories.

Fig 3 shows the histogram distributions of each measured chromatic category boundary.
The coloured histogram bars correspond to data collected under Condition 1 and the black
bars correspond to data collected under Condition 2. The x-axis in Fig 3 is the angle (in radi-
ans) which determines the hue in CIE L�a�b�, measured counterclockwise around the centre
with the horizontal as zero. The y-axis represents the fraction of trials belonging to each angu-
lar interval (bins). We have superimposed the curves corresponding to the rolling averages to
show the differences between both sets of data. Coloured curves correspond to Condition 1
and black curves correspond to Condition 2.

Although the variance of surrounding colour has been shown to have an effect in the per-
ceived saturation (not the hue) of embedded patches [93], the shape and position of the lines in
Fig 3 show no evidence of systematic effects of the type of background (Conditions 1 and 2) in
our categorical hue boundaries. The choice of a variegated background that randomly changed
in shape and hue for every trial was deliberately imposed to neutralize possible chromatic
induction effects [94, 95] in the long term, by averaging their influence. We also explored the
effects of background colour variance on our saturation-only boundaries. Fig 4 shows the his-
tograms of all results involving the achromatic categories (Grey versus other colours). Each of
these boundaries was tested in at least 3 lightness levels (shown in different columns in Fig 4).
Coloured bars represent experiments with coloured backgrounds (Condition 1) and black bars
represent experiments with achromatic background (Condition 2). Our results show no influ-
ence of the type of background, and this was confirmed by running paired Student’s T-tests
(p>0.05) for the two conditions in all hue and saturation boundaries. We hypothesized that
these saturation effects are generally small and our method (which aggregates the data points
of many observers in a single histogram) lacks the precision to distinguish between them.
Another possible explanation is that the black lines surrounding the central patch in Fig 1
(whose purpose is to reduce the local influence of the background) may have contributed to
reduce the overall variance effect. Since we could not find any degree of influence of the type of
background on our experimental results, we decided to aggregate all experimental data irre-
spective of condition in our subsequent modelling. The rationale here is that a general model
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Fig 3. Histograms of the boundaries plotted in Fig 2. The same data was plotted as histograms whose independent variable was the angle (hue). Each of
the horizontal panels corresponds to one of the lightness levels tested and the x-axis corresponds to the angular distance in radians measured
counterclockwise from the horizontal. Coloured bars represent Condition 1 (chromatic background) results and black bars underneath represent Condition 2
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of categorization will benefit from having a larger number of data points to calculate averages,
i.e. including rather than excluding inter- and intra-subject variation.

A closer inspection of the histograms in Fig 3 reveals some possible binomial distributions
in the Green-Blue (G-B) and Blue-Purple (B-Pp) boundaries, in the mid-lightness level plane
(L = 58). This might be caused by the presence of extra colour categories (e.g. turquoise) which
was not considered in the original experiment. The emergence of turquoise has also been con-
firmed in a previous experiment [78] where psychophysical results using 2-alternative forced
choice methods showed binomial results distributions in the B-G boundary. Although our
methods were designed to test for the boundaries of the 11 universal colour categories pro-
posed by Berlin and Kay, there is no assumption regarding the presence of other (non-explicit)
categories in the data.

Since we are attempting to bridge the gap between the subjective phenomenon of chromatic
categorization and the low level mechanisms based on the responses of V1 neurons, it is impor-
tant to consider the sources of error inherent to the process from both psychological and neural
sources. The former is manifest in the variability of the responses of a subject against the whole
subject population and the latter is evidenced in the variability of responses an observer gives
when presented with the same task many times. Table 2 shows estimations of the inter- and
intra- observer variability of our results. Inter-observer variability indicates the extent to which
individual observers agree with the average observer whereas intra-observer variability indi-
cates how consistent individual observers are across different trials. Both measures were calcu-
lated in CIEL�a�b� colour space (in ΔE units, which represent jnds) and were averaged for all
observers. Given that the trajectories were different depending on the boundary considered
(i.e. there were “lines” and “arches”, see Table 1) our measurements were obtained as follows.
In the case of “lines” we considered Euclidean distances from the mean value of the results. In
the case of “arches”, first we projected all trajectories to the mean curved path and converted
this path to a line, after this we proceeded as before. Results in Table 2 show that variability was
generally smaller in the achromatic-chromatic boundaries. Also, in most cases intra-observer
variability was larger than inter-observer: in average data collected over the same observer was
1.3 times further away from the mean than data pooled across all observers. In other words,
pooling over more subjects reduced the standard deviation with respect to having one subject
repeating the same experiment many times. This trend was reversed in some low-lightness
boundaries (Br-G and Pp-R for L = 36 and L = 47).

A few boundaries (R-Br at low-lightness, R-O at mid-lightness and O-Y at high-lightness)
produced larger variabilities than the rest (StDev>10 jnd). However, in all these cases aggre-
gating the results of many observers reduced the standard deviation. Achromatic-to-chromatic
boundaries produced much more consistent results (average inter- and intra-observer StDevs
equal to 3.34 and 4.96 respectively) indicating smaller “neural” and “psychological” variability.

Modelling results
Once the categorical boundaries have been measured, we proceeded to look for a suitable col-
our space where to describe them mathematically. Since our general objective is to link appear-
ance results to the colour machinery of the human visual system, we searched for the most
likely representation of the same data allowed by the physiological constraints of visual neu-
rons. Following this, we fitted the data to a collection of isoresponsive ellipsoids, therefore we
named our model NICE (Neural Isoresponse Colour Ellipsoids).

(achromatic background) results. The curves show the rolling average applied to the histogram data (coloured for Condition 1 and black for Condition 2)
which has the effect of smoothing out local variability.

doi:10.1371/journal.pone.0149538.g003
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Fig 4. Details of the Grey-versus-other-colours boundaries. The data was plotted as histograms where the abscissa represents the distance to the
achromatic locus (saturation). Plots are arranged in rows and columns, where each of the columns corresponds to one of the three lightness levels tested.
The rows correspond to a particular boundary between Grey and other colour regions. Coloured bars represent Condition 1 (chromatic background) and
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Linking colour appearance to L, M, S cone excitations
Signals from the cones undergo an important normalization before reaching later visual pro-
cessing stages. This normalization, which is likely to happen at the level of the retina, converts
cone excitations to a contrast representation. The first step in explaining our colour appearance
results in terms of physiological mechanisms is to choose a convenient physiologically-based
ATD-representation that combines and normalizes the outputs from the three cone-photore-
ceptors in the retina. There are many equiluminant planes suitable for this purpose, such as
those proposed by Luther [96], MacLeod and Boynton [97, 98] and the derivative proposed by
Smith and Pokorny [99]. These cone chromaticity spaces, which represent chromatic data in
terms of linear transformations of the cone excitations, consist of a reciprocal L and M-excita-
tion axis and a normalized S-excitation axis. In our case, we used the cone fundamentals

black bars represent Condition 2 (achromatic background). The curves show the rolling average of the data (coloured for Condition 1 and black for Condition
2).

doi:10.1371/journal.pone.0149538.g004

Table 2. Consistency between and within subjects for eachmeasured boundary. The table on the left shows the measures obtained for chromatic
boundaries and the table on the right for achromatic (Gr)-to-other-colours boundaries. Inter-observer variabilities were obtained by calculating the standard
deviation of each observer from the mean (all observers). Similarly, intra-observer variabilities were obtained by calculating the standard deviation of each
observer from its own mean (since each observer repeated the same experiment many times). Units correspond to CIE L*a*b* units (equivalent to a jnd).

A – Chromatic Boundaries B – Achromatic boundaries

L Boundary inter Intra L Boundary intra

36 Red-Brown 10.43 11.22 36 Grey-Green 1.38 4.77

36 Brown-Green 8.13 6.96 36 Grey-Blue 2.09 5.56

36 Green-Blue 4.12 4.75 36 Grey-Purple 1.14 4.02

36 Blue-Purple 2.68 3.28 36 Grey-Red 4.95 7.13

36 Purple-Red 6.77 6.24 36 Grey-Brown 7.17 7.23

47 Red-Brown 11.31 11.49 47 Grey-Red 5.49 5.43

47 Brown-Green 8.48 8.27 47 Grey-Brown 6.29 6.73

47 Purple-Red 7.68 7.37 58 Grey-Green 1.36 5.30

58 Pink-Red 5.54 7.98 58 Grey-Blue 1.72 6.62

58 Red-Orange 6.29 12.66 58 Grey-Purple 2.38 3.88

58 Orange-Brown 4.23 4.87 58 Grey-Pink 2.88 3.54

58 Brown-Green 7.67 7.86 58 Grey-Red 4.35 5.31

58 Green-Blue 4.45 6.32 58 Grey-Orange 2.56 3.43

58 Blue-Purple 4.08 4.30 58 Grey-Yellow 1.80 3.83

58 Purple-Pink 4.41 4.99 58 Grey-Brown 4.27 5.72

76 Pink-Orange 4.83 9.10 76 Grey-Pink 2.88 6.09

76 Orange-Yellow 5.86 7.88 76 Grey-Orange 4.75 4.16

76 Yellow-Green 4.87 5.13

76 Purple-Pink 4.41 4.49

81 Pink-Orange 2.80 4.97 81 Grey-Green 2.05 4.89

81 Orange-Yellow 8.83 10.04 81 Grey-Blue 2.58 6.44

81 Yellow-Green 5.12 6.11 81 Grey-Purple 2.77 4.09

81 Green-Blue 4.52 6.87 81 Grey-Pink 3.06 3.04

81 Blue-Purple 3.14 4.57 81 Grey-Orange 3.55 4.19

81 Purple-Pink 2.83 5.06 81 Grey-Yellow 3.10 3.77

86 Orange-Yellow 8.24 11.21 86 Grey-Orange 3.43 3.41

86 Yellow-Green 3.83 6.13 86 Grey-Yellow 5.40 5.41

doi:10.1371/journal.pone.0149538.t002
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proposed by Smith and Pokorny, which were calculated from the CIE 1931 2-deg colour
matching functions as revised by Judd and Vos [100]. Since luminance information is removed
from chromaticity planes, we added a third “Y” axis to represent the different lightness levels of
our data. The values represented in this Y-axis are obtained by adding L + M cone excitations,
as the exact shape of the luminous efficiency function is obtained from adding the L to the M
spectral sensitivities [101]. We call this space lsY and to convert our psychophysical results
from CIE L�a�b� to this new space we first converted them to CIE XYZ using the standard set
of equations [12] considering the monitor’s D65 as the reference white and later transformed
them to LMS cone excitations using the following transformation matrix [99]:

L

M

S

0
BB@

1
CCA ¼

0:15516 0:54307 �0:03287

�0:15516 0:45692 0:03287

0 0 0:05930

0
BB@

1
CCA

X

Y

Z

0
BB@

1
CCA ð1Þ

Since the Macleod and Boynton diagram requires a decision about the absolute height of the
S fundamental, we chose this free parameter (see last row in the 3x3 matrix in Eq 1) so that the
StDev of our experimental results involving the achromatic (Gr) boundary with all other col-
ours is the same for both chromatic axes when plotted in our new cone chromaticity space.
This purely arbitrary normalization has the aim of simplifying our model fittings by making
our data approximately isotropic. The LMS values were then transformed to chromatically-
opponent lsY data using Eq 2:

l ¼ L
LþM

;

s ¼ S
LþM

;

Y ¼ LþM;

ð2Þ

According to Eqs 1 and 2, the values of Y corresponding to the CIE L�a�b� lightness planes
we measured (L = [36, 47, 58, 76, 81, 86]) were Y = [11.23, 19.97, 32.37, 62.20, 72.90, 84.76]
respectively.

The cone chromaticity space represented by Eq 1 is both convenient for our modelling (see
below) and physiologically relevant since its axes, when normalized so that zero is the “white”,
are coincident to those reported for cells in the LGN of macaque [2, 6, 102]. These cells, carry-
ing both chromatic and luminance information from the retina correspond to the vast majority
of the input to the striate cortex.

Fig 5 shows an lsY plot of the same data presented in Fig 2. Colour-coded points represent
the corresponding categorical boundary. As before, points’ colours have been chosen as the
mathematical average of the two categories considered. The data is in broad agreement with
the rest of the literature, e.g. focal points collected in different colour systems and under differ-
ent illuminants [74, 76, 103] broadly fall within the limits defined by our categorical bound-
aries. In particular, the shapes and distributions of points in Fig 5 are consistent with the
shapes of the elliptical distributions of consensus colours in the work of Cao et al [103] which
were estimated for 10 deg eccentricity viewing.

Parametric fittings to categorical boundary data in lsY
The variability of the data allows for fitting several models. For example it is common to seg-
ment the chromatic space using fuzzy set regions [78, 81] or simply lines (planes) stemming
from the achromatic locus towards more saturated regions [79]. In our case we settled for the
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simplicity of 3D ellipsoids for two main reasons: (1), the distributions of data points in Fig 5
strongly hint of elliptical curvatures in 3D and (2) ellipsoids are parsimonious shapes that
depend on the squares of distances to a central point weighted by a parameter and correspond
well to the non-linear computations of cortical neurons in ATD space [8]. According to this,
the most convenient function to model our 3-dimensional lsY regions of categorical consensus,
i.e. an ellipsoid of the form:

l � l0
a

� �2

þ s� s0
b

� �2

þ Y � Y0

c

� �2

¼ 1 ð3Þ

which is defined by six parameters: centre [l0, s0, Y0], and semiaxes [a, b, c]. We also considered
three parameters of rotation: α, β, γ the counterclockwise rotation angles around each of lsY
axes respectively. When the 3D-ellipsoid defined by Eq 3 intersects with horizontal planes

Fig 5. lsY plot of all experimental results (Conditions 1 and 2). The scale of the s-axis was chosen so that the StDev of the achromatic boundaries data is
the same in both l and s directions (see last row in the 3x3 matrix in Eq 1).

doi:10.1371/journal.pone.0149538.g005
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(constant-Y) it determines 2D-ellipses, which are similar in shape to the distributions of focal
colours in Cao et al [103]. As an example, Fig 6 shows an ellipsoidal fit to the three Y-levels of
“blue” categorical boundaries in lsY space. To fit the data we first centred all points by subtract-
ing [l0, s0, Y0]. Next we applied a rotation matrix to all data points, generating rotations around
the l-, s-, and Y-axes [104, 105], so that Eq 3 can be applied without adding any angular param-
eter. Following this, we calculated the shapes of the 3D-ellipsoids by minimising the residual
sum of squares (RSS) of the distances between the ellipsoids and all points. The best fit was
determined by simultaneously modifying the nine ellipsoid parameters. Our fits included all

Fig 6. Details of an exemplary 3D-ellipsoid fitting to the psychophysical results irrespective of experimental condition.Data points correspond to the
boundaries of “blue” with all its neighbours (green, purple and achromatic borders were considered). Black ellipses are the intersections between 3D-ellipsoid
and the horizontal planes corresponding to the three Y-levels measured: Ylow = 11.23, Ymed = 32.37 and Lhigh = 72.90. The A vertical ellipse was inserted to
highlight the three points that are necessary to fully determine its curvature. White circles represent the weight exerted in the fit by data points related to each
of the nine boundaries measured. All observers and conditions were considered.

doi:10.1371/journal.pone.0149538.g006
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measurements, i.e. all observers, backgrounds and conditions and was produced using the con-
strained nonlinear multivariable search algorithm implemented by Matlab’s fmincon function
[106]. In most cases, algorithm initialization was based on the consensus regions (focal colours)
of Cao et al [103]. In other cases initialization was done manually. We imposed the criterion
that final values should be between 10% and 200% of the original initialization value.

Using this method, we fitted eight colour ellipsoids, i.e. “green”, “blue”, “purple”, “pink”,
“red”, “orange”, “yellow”, “brown”, and an “achromatic” ellipsoid. To be able to compare our
results to others in the literature, we split the “achromatic” ellipsoid into three different catego-
ries (“grey”, “white” and “black”) by conducting an extra ad-hoc experiment. The achromatic
ellipsoids share the same parameters for rotations, as well as centre and semiaxes lengths in l
and s directions. They only differ by their parameters in the luminance direction (i.e. their posi-
tion and length along the Y axis).

Fig 7 shows two different views of the ellipsoidal fittings to all psychophysical results. The
variability of the data determines some volumetric overlap between neighbours, which is con-
sistent with the variability exhibited by colour naming results in the literature (see introduc-
tion). The bottom plot includes an estimation of the gamut defined by the monitor’s
phosphorous used in our experiment. Because we did not cover the whole range of visible col-
ours in our experiments, parts of the solid determined by the monitor’s phosphors fall outside
the ellipsoids. In particular, the region of highly saturated “purple” and “blue” which is largely
determined by the “blue”monitor phosphorous is not well represented in the model. This
region consists mostly of low intensity light and to include it, it might be necessary to extend
our experiments to lightness ranges below the minimum considered here. Something similar
might be said about the small region of highly saturated “purple” and “pink” which is not cov-
ered by our ellipsoids. Table 3 shows the results of fitting 3D-ellipsoids to all of our experimen-
tal results. Columns show the parameters that define the ellipsoids (centre, semiaxes and
rotation angle in degrees counterclockwise).

In our mechanistic model, an input image is processed by the precortical neural machinery,
resulting in three ATD signals which then enter the cortex and activate isoresponsive neurons
tuned to a limited portion of the chromatically-opponent space. The output of these neurons is
gathered at a later stage by forward processing layers, resulting in a series of overall 3D “chro-
matic tuning” functions whose shape is based on the ellipsoids defined in Table 3. This “cate-
gorical belonging” is not just dualistically determined by whether a given input is in- or out-of-
an-ellipsoid function, but it is subject to some degree of uncertainty, particularly at the categor-
ical boundaries (as shown by our psychophysical results). We modelled this uncertainty as a
3-dimensional response function representing the probability of a given colour to be named as
belonging to each of the categories represented by the ellipsoids of Table 3. As a result, every
pixel in the input image is labelled with 11 numbers representing how much they belong to
each category: pixels that fall well inside one of the ellipsoids will have a large “belonging
value” (e.g. close to 1) for this category and close to 0 for the others and pixels that fall near a
categorical boundary will have values close to 0.5 for the two neighbouring categories and
almost 0 for the others. We modelled the large variability common to all categorization deci-
sion data using a non-linear logistic function defined by:

P ¼
�
1þ expðgðjx � cj � hÞ

��1

ð4Þ

where P is in the interval [0, 1] and represents the degree of “belonging”, c is the centre of the
3D ellipsoid considered, x is the distance between c and the pixel considered, g is the growth
ratio of the sigmoidal and h is the position of the half-height transition point. In practice h is
equal to the distance from c to the 3D ellipsoid in the direction joining c and the pixel
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Fig 7. Side and top views of our 3D-ellipsoidal fittings to all categorical boundary data in lsY space.
For each category, we considered all points bordering with its categorical neighbours, including the
achromatic centre. The ellipsoids’ sizes and positions were calculated by minimizing the planar distances
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considered. When the point represented by x is inside the ellipsoid we have h> |x-c| then the
factor g�(|x-c|-h) becomes negative and exp(g�(|x-c|-h)) tends to zero, which in turn makes the
result of Eq 4 tend to 1 (maximum belonging). Other values of x produce smaller values of P.
We arbitrarily set g to be equal to the average of the semi-axes of each ellipsoid, a choice that
seems to agree well with the variability observed in the psychophysical results. This way larger
ellipsoids (colour categories) have steeper boundaries and therefore the belongingness of pixels
outside drops faster.

Eq 4 solves the practical problem of having regions of the chromatic space not encompassed
by any of the categories defined in Table 3. This is a consequence of both having a limited num-
ber of categories and the stochastic component of colour categorization. Points that are “out-
side” or “in between” can still be categorized by Eq 4 with values that are smaller than unity.
However, this solution gives rise to another problem: all pixels have non-zero “belonging val-
ues” for all categories, most of them extremely small. These represent the very small likelihood
that, for example, a person assigns the name “red” to a blue patch. This likelihood can be
manipulated using the growth ratio g of the model in Eq 4, but a more comprehensive solution
will be to add more categorical regions in the future to fill the whole 3D space. The fact that
belongingness (P-values) are never zero has to do with the continuous nature of the functions
chosen to model our data. A thresholding of low values will solve this inconvenience (indeed
making the model far less elegant) but a quick estimation of P-values shows this might not be
necessary: the P-values of a pixel midway between the red and green centroids according to Eq
4 are PR = 2.8�10−05 and PG = 3.6�10−06. Similarly for a pixel midway between the yellow and
blue centroids (falling inside the blue ellipsoid): PY = 1.5�10−20 and PB = 1.0.

The fact that NICE is parametric allows the possibility of adjusting the shape and position
of each ellipsoid to simulate the effects of corticogeniculate feedback. This feedback projects to
the LGN in parallel streams that are likely to selectively modulate the responses of magnocellu-
lar, parvocellular and even koniocellular neurons. The functional role of V1 feedback is not
clearly elucidated, but it is known to multiplicatively increase parvocellular responses and

between the points and the ellipses generated by intersecting the 3D-ellipsoid with the six constant-Y
(horizontal) planes described in the main text. The top view also includes the triangle formed by the monitor’s
RGB phosphorous.

doi:10.1371/journal.pone.0149538.g007

Table 3. Results of fitting ellipsoids to the experimental results using the Nelder-Mead simplex direct search algorithm [106]. Columns refer to the
ellipsoid centre and semiaxes, and rotation around each of the axes.

Category Centre Semiaxes Rotation (deg)

l s Y l s Y l s Y

green 0.534 0.009 0 0.081 0.108 110.0 1.1 1.1 77.6

blue 0.552 0.241 35.1 0.075 0.198 90.0 2.9 0.0 22.0

purple 0.776 0.262 0.2 0.115 0.220 83.6 2.2 2.2 321.5

pink 0.723 0.085 66.5 0.066 0.053 55.5 0 0.6 17

red 0.836 0.021 0 0.099 0.044 44.0 0 1.1 168.0

orange 0.719 0.019 52.5 0.019 0.066 45.0 1.1 0 61.8

yellow 0.677 0.009 72.9 0.018 0.043 67.5 2.9 0 27.5

brown 0.703 0.019 0 0.027 0.054 36.0 0.6 0 62.7

grey 0.654 0.060 39.9 0.005 0.005 38.5 0 0 0

white 0.654 0.060 90 0.005 0.005 25.0 0 0 0

black 0.654 0.060 0 0.005 0.005 15.0 0 0 0

doi:10.1371/journal.pone.0149538.t003
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adjust the reliability, timing, and burst/tonic activity profile of LGN neurons in response to
visual stimuli (for a review see Briggs and Usrey [107]). There is also growing evidence of beha-
vioural/cognitive modulation on LGN neurons, e.g. visual spatial attention effects [108]. Since
these cognitive (memory, attention, language, cultural background, etc.) effects may influence
the results of a categorization task via feedback, we including these processes in our model by
adjusting its properties to the psychophysical results of many observers.

Ground-truth testing results
Fig 8 shows NICE’s results for a simulated Munsell Colour Chart [109]. The top left panel
shows the original chart and subsequent panels show the value of P in greylevels for the differ-
ent categories including the separation of Grey into Grey (Gr), Black (Bl) and White (W). The
two bottom panels show the psychophysical segmentation of the same chart as published by
Berlin & Kay [27] and Sturges &Whitfield [74] (black boxes). NICE’s results are superimposed
over the boxes in colour and show a near complete agreement with both sets of results every-
where except in the squares marked with an “x”. We also run NICE on a number of natural
scenes with some striking results. Fig 9 shows an exemplary set of results for two such natural
scenes.

Discussion
A complete understanding of colour vision entails a complete understanding of how signals
from the three cone photoreceptors are combined throughout the visual pathway and ulti-
mately the cortex to produce the strikingly rich perception of colour that we possess. Regarding
the first stages, it is well established that the neural mechanism sensitive to red-green variation
(the parvocellular- or P- pathway) originates in the retina and conveys signals through the
LGN to the cortex [2]. Less well known is the substrate behind the complementary mechanism
sensitive to yellow-blue variation (that has been associated to the koniocellular or K-pathway),
which is likely to receive substantial input from S-cones. This input has been shown to diverge
in many important respects according to whether it is excitatory or inhibitory, e.g. excitatory S-
inputs cells have more homogeneous spatiochromatic properties than inhibitory S-inputs [13].
These asymmetries have been linked to LGNmeasurements and behavioural work [6, 9]. Fur-
ther up in the pathway, the lack of agreement between the cardinal directions measured at the
LGN level [2] and those revealed psychophysically [9] and at the level of the cortex [6–8] sug-
gests the existence of further non-linear transformations, some of which have been modelled
by adding a perceptual opponent stage beyond the already known cone opponent stage [10,
11]. Indeed the existence of a broad distribution of chromatic responses among cortical neu-
rons suggests that in addition to the cardinal mechanisms, many less prominent mechanisms
(tuned to various directions in colour space) are present in the cortex [6, 7].

In the case of chromatic categorization, there is no agreed theory of how the brain achieves
this prompt and unique identification and categorization of colours. Although language exerts
a dominant and complex influence, psychophysical evidence hints at the presence of common
low-level, perceptual components behind same/different decisions in both categorization and
discrimination tasks [38]. This perceptually-based machinery linking the mechanisms respon-
sible of chromatic discrimination to those behind colour naming is certainly subject to modula-
tory feedback from higher cortical areas carrying the effects of cognition and language. This
feedback is most likely introduced at the level of the LGN which impacts over a large popula-
tion of V1 neurons and whose input includes higher areas of the brain (e.g. visual cortex, supe-
rior colliculus, and parts not directly involved in visual perception) [107, 108, 110]. We chose
not to enforce these higher-order chromatic mechanisms explicitly but to rather fit our model
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Fig 8. Results of our chromatic categorization model when applied to a simulated Munsell Chart. The first panel shows the original image and
subsequent panels show the value of “belonging” (obtained from Eq 4) for each colour and category. The bottom panels show psychophysical results
represented by black boxes (obtained by Berlin & Kay [27] and Sturges &Whitfield [74] respectively), superimposed to ours.

doi:10.1371/journal.pone.0149538.g008
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Fig 9. Typical chromatic categorization results of NICE shown for two different natural scenes.Coloured panels show the original image and
subsequent panels show the value of “P” for each colour and category.

doi:10.1371/journal.pone.0149538.g009
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to psychophysical data within the framework provided by the chromatic signatures of the tha-
lamocortical pathway [2]

Since the aim of the present study is to contribute to bridge the gap between the behavioural
and neurophysiological approaches, we started by defining the overall properties that a chro-
matic categorization system should have to operate in the colour space determined by the
responses of opponent and non-opponent cells at the level of the LGN. To do so we psycho-
physically measured the boundaries between nine universal chromatic categories defined as 3D
regions in the ATD space of MacLeod and Boynton [97]. Following this we found themost par-
simoniousmathematical representation of these regions in the form of 3D ellipsoids which are
good descriptions of the categorical boundaries emerging from our psychophysical results. It
turns out that a large proportion of visual cortex neurons are equipped with the computational
machinery to respond to stimuli arranged in ellipsoidal 3D surfaces such as the ones that best
describe our categorical regions cortex [8]. Based on these facts we hypothesized that these
visual cortex neurons may be responsible for the first stages of chromatic categorization and
propose a model as a proof of concept, i.e. a demonstration of the feasibility of this theory. The
model incorporates psychophysical and neurophysiological evidence of chromatic computa-
tion present in the retina and LGN [1–3, 11, 101], and uses these signals as input to a hypothet-
ical recreation of the non-linear processing present in the cortical machinery [8, 21–24]. The
later part is highly conjectural, since much of the evidence shows that colour processing in the
cortex is not related to colour perception in any obvious way [14–16, 111]. However, it has
been argued [8] that these inconclusive results are the product of the inadequacy of linear char-
acterization methods and that V1 neurons combine signals in a non-linear but systematic way,
with isoresponses in chromatically opponent space that are either planar, cup-shaped or ellip-
soidal. These 3D-figures were modelled from a collection of points that evoked the same firing
rate in V1 neurons when presented with drifting Gabor patterns. The same study shows that
about half of the neurons measured exhibited ellipsoidal responses, with preferences for axes
that were aligned to perceptually-identified colour directions. Although the neurons described
by Horwitz and Hass were tested using stimuli centred on the achromatic locus, their results
and model show how curved isoresponse surfaces can be constructed by nonlinearly combin-
ing signals from linear neurons. In this line, we modelled the responses of colour categorization
neurons based on similar nonlinear combinations: our ellipsoids are built using the same kind
of neural computations modelled by Horwitz and Hass.

Our study differs from previous psychophysical studies in two important ways: (1) we evalu-
ated the distribution of colour categories in 3D space, i.e. considering variations in lightness
and (2) we focused our measurements in the chromatic boundaries instead of focal colours.
This experimental method for identifying boundaries is better than previous methods since it
concentrates the data collection in regions of maximum uncertainty. Had we employed the
most common approach of measuring regions of agreement we would have obtained unreliable
boundaries (obtained mostly by averaging distances among pairs of focals) with little informa-
tion about inter-observer variability at the boundaries. Furthermore, knowing the shape of the
boundaries gave us a clear advantage when it came to fit unknown 3D-shapes to the psycho-
physical data, however there were still many possible solutions that could fit the data and we
decided for the simplest: 3D-ellipsoids. Other solutions (such as Gaussians, triple sigmoidals,
or even vertical planes) can also fit our data in 3D however, the complexity and number of
parameters make them very difficult to justify from a biological point. 3D ellipsoids need only
10 parameters to fit (i.e. we need to measure three boundaries at three different lightness levels
to define them) and their shapes resemble the shapes that evoke identical firing rate in isore-
sponsive neurons in the visual cortex.
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Although the current model configuration is based on a limited set of psychophysical
results, its predictions can be generalised by accommodating other categorical regions and
boundaries such as olive, turquoise, skin, peach, etc. This is very straightforward and only
requires considering pixels with intermediate values (e.g. a pixel with both PGreen and PBlue <1)
as belonging to a transitional category. Another feasible solution is to add more ellipsoids by
conducting further psychophysical measurements. Additionally, ellipsoidal shapes are
extremely versatile from a modelling point of view: their shapes and positions can be easily
adjusted in future iterations of the model to take into account overall as well as local image
characteristics, adapting them to variations in illumination and surround contrast. This in turn
could lead to insights about categorical "illusions", such as the identical X categorized as yellow
or grey according to the background (see Fig 5.9 in [90]).

Having a versatile modelling solution has many advantages. For example, by fitting our
ellipsoids to the averaged results of many observers we are able model the (cognition- and lan-
guage- based) higher-level influences that are apparent in our categorization data. Indeed, our
psychophysical results show that inter-observer variability is smaller than the variability from
individual observers (see Table 2). This remarkable agreement across colour-normal observers
(at least for the particular task and colour boundaries tested here) supports the claim that some
kind of cortical normalization operates over the chromatic mechanisms [9, 60], promoting the
invariance of colour categories across observers which in turn favours a more accurate verbal
communication. These results (in addition to the mismatch between physiological- and psy-
chophysically-measured cardinal axes [6]) can be explained by the presence of cortical feed-
back at the level of the LGN [107]. The success of NICE with standard colour charts and
naturalistic stimuli verifies that our approach although incomplete and tentative, has the
potential of being correct.

Additional testing shows that our quantitative modelling results are slightly better than
those of current state-of-the-art chromatic categorization algorithms. Table 4 shows the com-
pared results of several colour categorization models when applied to both the Berlin & Kay
and Sturges &Whitfield psychophysical results. These models are: Lammens’s Gaussian model
(LGM) [112]; MacLaury’s English Speaker (MES) [113]; Benavente and Vanrell’s Triple Sig-
moid model (TSM) [114]; Seaborn’s fuzzy k-means model (SFKM) [85]; Benavente et al’s Tri-
ple Sigmoid- Eliptic Sigmoid model (TSMES) [81]; van de Weijer et al’s Probabilistic Latent
Semantic Analysis (PLSA) [87] and ours.

As a further test, we ran NICE on the psychophysical results of Hansen et al [79] whose
observers had to categorize 417 coloured patches as belonging to one of eight categories (red,
orange, yellow, green, turquoise, blue, purple, and grey). Our results came slightly worse than

Table 4. Comparative results of several colour categorization models when applied to the Berlin & Kay [27] and Sturges &Whitfield [74] psycho-
physical results. The data for LGM, MES, TSM, SFKM and TSEMwas obtained from Table 2 in Benavente et al [81].

Berlin and Kay results Sturges and Whitfield results

Coincidences Errors % errors Coincidences Errors % errors

LGM 161 49 23.33 92 19 17.12

MES 182 28 13.33 107 4 3.6

TSM 185 25 11.9 108 3 2.7

SFKM 193 17 8.1 111 0 0

TSEM 193 17 8.1 111 0 0

PLSA 187 23 12.3 109 2 1.8

NICE 206 4 1.9 111 0 0

doi:10.1371/journal.pone.0149538.t004
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before (7.7% of errors) mainly because of the many differences between the paradigms used to
collect Hansen’s data and ours, namely their viewing conditions were different; they ignored
chromatic regions such as pink and brown and added an intermediate region (turquoise) not
present in our paradigm. Moreover, their subjects (native German speakers) had to select the
category to which colour samples belong in an experiment conducted in German. This higher-
level language influence is likely to have contributed to the larger number of mismatches. How-
ever, despite of this our results show that our low-level model is robust enough to account for
results in both the computer vision and psychophysics literature which include some top-
down, language contributions. As a comparison, results from other models (TSEM and PLSA)
are also included in Table 5.

We have found that in contrast to previous studies where subjects had to memorize best
examples of colours [115], our observers had great difficulty in reproducing the same boundary
even after substantial training. As discussed in the introduction there are many sources of vari-
ability which affect our data, widening the shape of the histograms in Fig 3 and Fig 4. We
account for this variability by including a sigmoidal term in Eq 4, since our objective is to study
and model the low-level side of the phenomenon which is arguably common to all humans.
However, from Figs 3 and 4 it is clear that this slope parameter is not the same for all ellipsoids
and boundaries and can be adjusted to consider each ellipsoid’s variability separately in future
versions of the model. We have also tested for systematic effects such as to whether the pres-
ence of a variegated or flat background may influence categorization and our results show this
not to be the case for the present paradigm. We believe our measurement error (associated to
the method of adjustments) plus the large observer variability is likely to mask smaller effects
such as those observed by Brown and MacLeod.

The question of whether the sensory information at the level of ATD mechanisms forms the
basis of categorical perception has not been settled in the literature. Some researchers postu-
lated that our basic ability to discriminate colours should fully explain why we use a particular
set of categories to communicate about colours. In this line Regier et al found sensitivity for
colour differences to be higher across than within category boundaries in CIEL�a�b� space
[116], but Witzel and Gegenfurtner [69] only found a loose relationship between colour catego-
rization and discrimination after measuring discrimination thresholds and colour categories
around an isoluminant hue. Other experiments found that reaction times did not follow
named colour categories in visual search [117]. However we would argue that these results only
challenge the idea of a direct link between category effects and sensitivity to colour differences.
In our model, we postulate that the precise location of a categorical boundary is a non-linear
function of second-stage mechanisms, is subject to neural noise and varies from observer to
observer (and even from one trial to the next). This accumulation of variability and non-linear-
ity explains why it is so difficult to prove the existence of a link between continuous colour per-
ception and colour categorization by exploring category effects.

Table 5. Comparative results of three state-of-the-art colour categorization models when applied to
the Hansen et al [79] psychophysical results. All observers, colour samples and viewing conditions were
considered for the neutral illumination condition.

Hansen et al results

Coincidences Errors %errors

TSEM 4423 197 4.3

PLSA 4339 281 6.1

NICE 4265 355 7.7

doi:10.1371/journal.pone.0149538.t005
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At its core, the model is built around the hypothesis that there is a collection of neurons
equally-sensitive to colour stimuli organized in the shape of ellipsoids in opponent colour
space. In this view each neuron categorizes a small portion of the space by firing when a stimu-
lus falls within the volume defined by this ellipsoid. Subsequent layers build over the outputs of
the previous so that the overall effect resembles the large ellipsoids found psychophysically and
recreated by NICE. Such an arrangement would benefit from neurons sensitive to the same
chromatic stimuli to be located physically close. Although there is ample evidence of such
mechanisms in the cortical processing of spatial frequency (e.g. the spatial contrast sensitivity
function appears to be the envelope of many narrowly tuned SF selective channels), there is no
evidence of similar arrangements for chromatic categorization. However, the discovery of V1
neurons that functionally perform these seemingly complex operations and the discovery of
chromatically selective clusters in this and other areas support the ideas proposed here. In sum-
mary, our work does not intend to provide a complete, quantitative and rigorous testing of our
ideas but rather a proof of concept, a demonstration of feasibility which contributes to show
their potential for future use.

Conclusions
Our work attempts to tackle the explanatory gap between colour perception and colour
naming by providing a biologically-plausible model of chromatic categorization. Since
visual signals enter the cortex in the form of two chromatically opponent and a luminance
channel, we started by measuring the boundaries of chromatic categories in an ATD-colour
space derived from cone photoreceptor sensitivities and postreceptoral processing mecha-
nisms. To this end, we defined a psychophysical experiment explicitly targeted to measure
categorical boundaries and explored nine of the universal categories originally proposed by
Berlin and Kay [27]. We parsimoniously modelled these nine regions as 3D ellipsoids,
which are similar to the shapes that evoke identical firing rate in isoresponsive neurons in
the visual cortex [8]. Finally we tested our simple model with results at the same level or
above the state-of-the-art.

Although NICE is by no means a finished product, our results are surprisingly encouraging
for such a simplistic setup. Each categorical region is basically defined by weighted sums of
squared cone-contrast and luminance inputs and needs only few parameters to be specified. It
is difficult to imagine a simpler system to segment colour space into categories, which is argu-
ably a point on its favour. For all these reasons we believe in the plausibility of this model from
a biological point of view.
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